如果平台能够帮忙把你的内容放在很显眼的位置(比如网站的首页),或者帮你把你内容发布到每一个用户的面前,那内容的曝光量就非常可观了。

  ——抖音就是这样帮你分发的。

  但是,抖音并不会把每一个创作者生产的内容都分发到抖音的用户面前,这非常不现实。一个是因为内容创作者太多了,即便把内容推荐给用户,用户也没时间看完;另一个是,不同的用户有不同的喜好,如果把一篇足球相关的内容推荐给一个喜欢化妆的女孩面前,这对于女孩来说非常不好。

  这就需要抖音用一种策略来优化它的分发方式,好让好的内容被更多的人看到,也好让用户只看到自己喜欢的内容。

  抖音的采用的优化方法叫做“算法分发”,并且是以一种叫做“协同过滤”为主的分发方法。

  这个词非常晦涩,你不需要记住它,只要知道它的原理就好了。用两个简单的词来形容的话,就是“物以类聚,人以群分”。两个词分别对应两种方法:基于物体的协同过滤和基于用户的协同过滤。

  什么是“基于物体的协同过滤”?

  假设A1、A2和A3是同一类内容(比如都是NBA相关的),当某个用户喜欢了A1这条视频,那么理论上他也会喜欢A2和A3。反过来,如果用户看到A1和A2这两条视频后没有点赞(喜欢),那么也不应该再把A3推荐给他。

读懂此文,抖音能火不再是玄学

  在这种推荐算法下,当系统想要给用户推荐内容的时候,需要两个步骤:

  1. 分析用户喜欢过的内容;

  2. 找到与该内容相似的内容,推荐给用户。

  对于抖音来说,这种方法有以下几个麻烦:

  · 每天产生的视频太多了,抖音要对每条内容做识别分类;

  · 视频内容识别太麻烦了,除了需要识别视频画面中出现的物品以及他们之间的关系外,还要识别视频的背景音乐、台词。

  显然,对于以视频为主要内容的抖音来说,选择这种推荐算法是极其不明智的。不过,好在还有第二种算法。